B.Sc. Part–III (Semester–V) Examination

MATHEMATICS

MATHEMATICAL ANALYSIS

Paper-IX Time : Three Hours] [Maximum Marks: 60 Note: (1) Question No. 1 is compulsory, attempt it once only. (2) Attempt **one** question from each unit. 1. Choose the correct alternative : 10 Consider P = (1, 2, 3, 4) is a partition of interval [1, 4], then $\mu(P)$ is (i) (a) 1 (b) 2 (c) 3 (d) 4 Let f be a bounded function defined on [a, b] and P be any partition of [a, b], P* be refinement (ii) of P. Then L(P,f) and L(P*,f) satisfy..... (a) $L(P, f) \le L(P^*, f)$ (c) $L(P, f) \ge L(P^*, f)$ (d) None of these (iii) An integral $\int_{0}^{\infty} e^{-kx} x^{n-1} dx$ is : (b) $\frac{\sqrt{n}}{k^n}$ (a) $k^n \sqrt{n}$ (c) k^{n} \sqrt{n} (d) (iv) The value of $\sqrt{\frac{1}{2}}$ is (a) $\frac{1}{2}$ (b) 1 (c) $\sqrt{\pi}$ 21 (d) π (v) In polar form, the Cauchy Riemann equation can be (a) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$

(b)
$$\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial \theta}$
(c) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$
(d) None of these
(vi) If $w = u + iv$ is analytic function in D, then $\frac{dw}{dz}$ is :
(a) $-\frac{\partial w}{\partial x}$ (b) $\frac{\partial w}{\partial y}$
(c) $-\frac{\partial w}{\partial y}$ (d) $\frac{\partial w}{\partial x}$
(vii) A Mobius transformation $w = az$, a is real number, is :
(a) Rotation transformation (b) Magnification transformation
(c) Translation transformation (d) None of these
(viii) A bilinear transformation with only one fixed point is :
(a) Loxodromic (b) Parabolic
(c) Elliptic (d) Hyperbolic
(iv) For any collection of $\{A_u\}$ open sets, $\bigcup_a A_u$ is :
(a) Closed (b) Open
(c) Semi-open (d) None of these
(x) Let X denote a discrete metric space and $A \subseteq X$ then :
(a) A is open
(b) A is closed
(c) A is both open and closed iff $A = \phi$ and $A = X$
(d) A is both open and closed $UNT--I$
(a) Let the functions f and g be integrable on $[a, b]$ and let α be any real constant then
(i) $\alpha \in R[a, b]$ and $\int_a^b \alpha dx = \alpha(b-a)$

2.

5

. ∀

(ii)
$$\alpha f \in \mathbb{R}[a, b] \text{ and } \int_{a}^{b} (\alpha f)(x) dx = \alpha \int_{a}^{b} f dx.$$

(b) Refinement of a partition P increases lower sums and decreases upper sums

i.e.
$$L(P, f) \leq L(P^*, f)$$
 and $U(P, f) \geq U(P^*, f)$

OR

3. (c) If f is a bounded and integrable function over [a, b] and M, m are the bounds of f over [a, b], then prove that 5

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$$

(d) If $f \in R[a, b]$, then $F:[a, b] \to R$ defined by $F(x) = \int_{a}^{x} f(t) dt$ is continuous on [a, b]. If f is continuous at $x_0 \in [a, b]$ then F is differentiable at x_0 with $F'(x_0) = f(x_0)$ and if f is continuous on [a, b] then F is differentiable on [a, b] with $F'(x) = f(x) \forall x \in [a, b]$. 5

UNIT—II

4. (a) Let
$$f(x), g(x) \in C$$
. $a \le x < \infty$ and $0 \le f(x) \le g(x), \forall x \ge a$ then 5

(i)
$$\int_{a}^{\infty} g(x) dx$$
 converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges
(ii) $\int_{a}^{\infty} f(x) dx = \infty \Rightarrow \int_{a}^{\infty} g(x) dx = \infty$

(b) Prove that
$$\int_{1}^{\infty} e^{-x} x^{n-1} dx$$
 is convergent for any n

OR

5. (c) Show that the integrals :

(i)
$$\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+x^3}} dx \text{ and}$$

(ii)
$$\int_{1}^{\infty} \frac{x dx}{3x^4 + 5x^2 + 1} dx$$

Converges absolutely.

A

(Contd.)

5

5

5

(d) Prove that
$$\overline{|2m|} = \frac{2^{2m-1}}{\sqrt{\pi}} \overline{|m|} \overline{|m|} + \frac{1}{2}$$
 5

UNIT-III

6. (a) Prove that necessary condition that f(z) = u(x, y) + i v(x, y) be analytic in a region D is

that
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 in D. 5

(b) Show that $u = y^3 - 3x^2y$ is harmonic and find its harmonic conjugate function. Hence find the analytic function f(z) = u + iv. 5

OR

- 7. (c) If f(z) is analytic function with constant modules show that f(z) is constant. 5
 - (d) If $w = \phi + i\Psi$ represents the complex potential for an electric field and $\Psi = (x^2 - y^2) + \frac{x}{x^2 + y^2}$. Determine the function ϕ . 5

UNIT-IV

- 8. (a) Find the fixed points of the transformation $w = \frac{z-1}{z+1}$. State whether it is hyperbolic, elliptic or loxodromic.
 - (b) Prove that, every bilinear transformation with two non-infinite fixed points α , β is of the form $\frac{w-\alpha}{w-\beta} = k \frac{z-\alpha}{z-\beta}$, where k is the constant.

OR

- 9. (c) Under the transformation $w = \frac{1}{z}$ a straight line L in the z-plane is mapped into : 5
 - (i) a circle if does not pass through the origin z = 0.
 - (ii) a straight line if L passes through the origin z = 0.
 - (d) Find the bilinear transformation which maps the points z=1, i, -1 into the points w = i, 0, -1. Find the image of |z| < 1.

UNIT-V

10. (a) Let X be a non-empty set and let d be a real function of ordered pairs of elements of X which satisfies the following conditions. 5

- $d(x, y) = 0 \Leftrightarrow x = y$ (i)
- (ii) $d(x, y) \le d(x, z) + d(y, z)$ show that d is a metric on X.

(b) Let $\{A_{\alpha}\}$ be a finite or infinite collection of sets A_{α} then $\left[\bigcup_{\alpha} A_{\alpha}\right]^{c} = \bigcap_{\alpha} A_{\alpha}^{c}$ 5

OR

- 11. (c) Let (X, d) be a metric space and $A \subseteq X$. Prove that A is closed iff A contains its boundary $b(A) \subseteq A$.
 - (d) Let (X, d) be a metric space and $x, y, x', y' \in X$ show that 31

$$|d(x,y)-d(x',y')| \leq d(x,x')+d(y,y')$$

5