## B.Sc. Part-III (Semester-V) Examination <br> MATHEMATICS <br> MATHEMATICAL ANALYSIS <br> Paper-IX

Time: Three Hours]
[Maximum Marks: 60
Note: - (1) Question No. 1 is compulsory, attempt it once only.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(i) Consider $\mathrm{P}=(1,2,3,4)$ is a partition of interval $[1,4]$, then $\mu(\mathrm{P})$ is $\qquad$
(a) 1
(b) 2
(c) 3
(d) 4
(ii) Let f be a bounded function defined on $[\mathrm{a}, \mathrm{b}]$ and P be any partition of $[\mathrm{a}, \mathrm{b}], \mathrm{P}^{*}$ be refinement of $P$. Then $L(P, f)$ and $L\left(P^{*}, f\right)$ satisfy..........
(a) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(b) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \geq \mathrm{U}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(c) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \geq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(d) None of these
(iii) An integral $\int_{0}^{\infty} e^{-k x} x^{n-1} d x$ is :
(a) $k^{n} \sqrt{n}$
(b) $\frac{\sqrt{n}}{k^{n}}$
(c) $k^{n}$
(d) $\sqrt{n}$
(iv) The value of $\sqrt{\frac{1}{2}}$ is
(a) $\frac{1}{2}$
(b) 1
(c) $\sqrt{\pi}$
(d) $\pi$
(v) In polar form, the Cauchy Riemann equation can be $\qquad$
(a) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta}$
(b) $\frac{\partial u}{\partial r}=-\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$
(c) $\frac{\partial u}{\partial r}=-\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$
(d) None of these
(vi) If $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ is analytic function in D , then $\frac{d w}{d z}$ is:
(a) $-\frac{\partial w}{\partial x}$
(b) $\frac{\partial w}{\partial y}$
(c) $-\frac{\partial w}{\partial y}$
(d) $\frac{\partial w}{\partial x}$
(vii) A Mobius transformation $\mathrm{w}=\mathrm{az}$, a is real number, is:
(a) Rotation transformation
(b) Magnification transformation
(c) Translation transformation
(d) None of these
(viii) A bilinear transformation with only one fixed point is:
(a) Loxodromic
(b) Parabolic
(c) Elliptic
(d) Hyperbolic
(ix) For any collection of $\left\{\mathrm{A}_{\alpha}\right\}$ open sets, ${\underset{\alpha}{\alpha}}^{\mathrm{U}} \mathrm{A}_{\alpha}$ is:
(a) Closed
(b) Open
(c) Semi-open
(d) None of these
(x) Let X denote a discrete metric space and $\mathrm{A} \subseteq \mathrm{X}$ then :
(a) A is open
(b) A is closed
(c) A is both open and closed iff $\mathrm{A}=\phi$ and $\mathrm{A}=\mathrm{X}$
(d) A is both open and closed

## UNIT-I

2. (a) Let the functions fand $g$ be integrable on $[\mathrm{a}, \mathrm{b}]$ and let $\alpha$ be any real constant then
(i) $\alpha \in \mathrm{R}[a, b]$ and $\int_{a}^{b} \alpha d x=\alpha(b-a)$
(ii) $\quad \alpha f \in \mathrm{R}[a, b]$ and $\int_{a}^{b}(\alpha f)(x) d x=\alpha \int_{a}^{b} f d x$.
(b) Refinement of a partition P increases lower sums and decreases upper sums i.e. $\mathrm{L}(P, f) \leq \mathrm{L}\left(P^{*}, f\right)$ and $\mathrm{U}(P, f) \geq \mathrm{U}\left(P^{*}, f\right)$

## OR

3. (c) If fis a bounded and integrable function over [a, b] and $M, m$ are the bounds of fover $[a, b]$, then prove that
$m(b-a) \leq \int_{a}^{b} f(x) d x \leq \mathrm{M}(b-a)$
(d) If $f \in R[a, b]$, then $\mathrm{F}:[a, b] \rightarrow \mathrm{R}$ defined by $F(x)=\int_{a}^{x} f(t)$ dt is continuous on $[\mathrm{a}, \mathrm{b}]$. If f is continuous at $x_{0} \in[a, b]$ then F is differentiable at $x_{0}$ with $\mathrm{F}^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$ and if f is continuous on $[\mathrm{a}, \mathrm{b}]$ then F is differentiable on $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{F}^{\prime}(x)=f(x) \forall x \in[a, b]$. 5

## UNIT-II

4. (a) Let $f(x), g(x) \in C . a \leq x<\infty$ and $0 \leq f(x) \leq g(x), \forall x \geq a$ then
(i) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges
(ii) $\int_{a}^{\infty} f(x) d x=\infty \Rightarrow \int_{a}^{\infty} g(x) d x=\infty$
(b) Prove that $\int_{1}^{\infty} e^{-x} x^{n-1} d x$ is convergent for any n .

## OR

5. (c) Show that the integrals:
(i) $\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+x^{3}}} d x$ and
(ii) $\int_{1}^{\infty} \frac{x d x}{3 x^{4}+5 x^{2}+1} d x$

Converges absolutely.
(d) Prove that $\sqrt { 2 m } = \frac { 2 ^ { 2 m - 1 } } { \sqrt { \pi } } \sqrt { m } \longdiv { m + \frac { 1 } { 2 } }$

## UNIT-III

6. (a) Prove that necessary condition that $f(z)=u(x, y)+i v(x, y)$ be analytic in a region D is that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ in D.
(b) Show that $u=y^{3}-3 x^{2} y$ is harmonic and find its harmonic conjugate function. Hence find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$.

## OR

7. (c) If $\mathrm{f}(\mathrm{z})$ is analytic function with constant modules show that $\mathrm{f}(\mathrm{z})$ is constant.
(d) If $w=\phi+i \Psi$ represents the complex potential for an electric field and $\Psi=\left(x^{2}-y^{2}\right)+\frac{x}{x^{2}+y^{2}}$. Determine the function $\phi$.

## UNIT-IV

8. (a) Find the fixed points of the transformation $w=\frac{z-1}{z+1}$. State whether it is hyperbolic, elliptic or loxodromic.
(b) Prove that, every bilinear transformation with two non-infinite fixed points $\alpha, \beta$ is of the form $\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}$, where k is the constant.

OR
9. (c) Under the transformation $w=\frac{1}{z}$ a straight line L in the z-plane is mapped into :
(i) a circle if does not pass through the origin $\mathrm{z}=0$.
(ii) a straight line if L passes through the origin $\mathrm{z}=0$.
(d) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=i, 0,-1$. Find the image of $|\mathrm{z}|<1$.

## UNIT-V

10. (a) Let X be a non-empty set and let d be a real function of ordered pairs of elements of X which satisfies the following conditions.
(i) $d(x, y)=0 \Leftrightarrow x=y$
(ii) $d(x, y) \leq d(x, z)+d(y, z)$ show that d is a metric on X .
(b) Let $\left\{\mathrm{A}_{\alpha}\right\}$ be a finite or infinite collection of sets $\mathrm{A}_{\alpha}$ then $\left[\bigcup_{\alpha} \mathrm{A}_{\alpha}\right]^{c}=\bigcap_{\alpha} \mathrm{A}_{\alpha}^{c}$

## OR

11. (c) Let $(\mathrm{X}, \mathrm{d})$ be a metric space and $\mathrm{A} \subseteq \mathrm{X}$. Prove that A is closed iff A contains its boundary $\mathrm{b}(\mathrm{A}) \subseteq \mathrm{A}$.
(d) Let $(\mathrm{X}, \mathrm{d})$ be a metric space and $x, y, x^{\prime}, y^{\prime} \in \mathrm{X}$ show that 5 $\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)$

